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Abstract. We consider a model of oriented, non-intersecting flux lines on the lattice Z9, where
each flux line is assigned a Boltzmann factor w per unit length and a fugacity y. We prove the
existence of free energy, both for y > 0 and for y = —1, and show that it is independent of y
for y > 0. Using upper and lower bounds in terms of exactly solvable models, we rigorously
establish that, for all y > 0, the model has a phase transition at w = 1/d. For o < 1/d, we
prove that the free energy and all bulk correlation functions vanish, implying the exclusion of
flux lines from the bulk. In this regime, we also show that the flux line density decays at least
exponentially with distance from the boundary.

1. Introduction

This paper concerns a’ d-dimensional model of oriented, non-intersecting flux lines,
characterized by two parameters: a Boltzmann factor e per unit length and a fugacity y
per flux line. Models of this type and related vertex and dimer models have been proposed
by many authors [1-7]; the particular model considered here was first proposed by Wu
and Huang [8]. Applications of these models include flux lines in superconductors {9-12],
commensurate—incommensurate transitions [13—15], biomembrane transitions [5, 13, 15, 16],
and polymer melting transitions [17].

For y = —1, the model has recently been solved exacily in all dimensions d > 2,
and has a transition at w = 1/4 [8]. The more physical y = 1 model has been solved
exactly in d = 2 [2,3], where it has a second-order phase transition at w = % In three
dimensions, models similar to the y = | model have been analysed by various methods
[5-7,16}; applied to the ¥y = 1 model, these methods suggest that it has a second-order
phase transition at w = %

In this paper. we rigorously establish that the madel fias a phase transition at w = 1/d,
for all y > 0 and all & > 1. In order to do this. we use the exact solution of the Wu—Huang
y = —1 model as a bound. First we establish the existence of the free energy f{w. y} for
y > 0, and prove the somewhat surprising fact that it is independent of the fugacity y. We
then bound f(w, ¥) = f{w, 1) by the known free energy of the y = —1 model for e» > 1/d,
which, together with a simple bound coming from the non-interacting model, enables us to
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prove that w = 1/d is indeed a critical point. In order to use the exact result, we must
establish the existence of the infinite-volume free energy f(w, —1). This is accomplished
by generalizing to arbitrary dimension a strategy recently developed by one of us [18] in
the analysis of correlation functions in the two-dimensional y = —1 model.

There are other examples of non-exactly solvable models for which it is possible to
rigorously locate the critical point in the absence of duality. One such example is the
d-dimensional Slater KDP model, for which Nagle [19] located the critical point under the
assumption of existence of the free energy. Also recently Madras [20] has proven that the
seif-avoiding walk on a square lattice has a phase transition, and has also located the critical
point.

In addition to proving the existence of a phase transition at w = 1/d, we establish several
properties of the “Meissner phase’, @ < 1/d. First, we show that the free energy and all
bulk correlations vanish, implying the exclusion of flux lines and hence the interpretation as
a Meissner phase. Also, for a semi-infinite system, we prove that the correlation functions
decay at least exponentially with distance from the boundary. This provides an upper bound
on the London penetration depth.

The parameter @ can be regarded as the exponential of an external magnetic field; it s
therefore natural to consider 2 generalized model (see [8, 12]) with non-negative direction-
dependent weights w,, w =1, ..., d. All of our results are stated and proved for this more
general model, for which we show that the transition occurs at 3, wy, = 1; taking o, = @
for all & gives the critical value w = 1/d stated above.

We state and prove most of our results for the infinite-volume limit of rectangular
systems with free boundary conditions. However, many of our results hold for other
boundary conditions as well. In the final section, we consider two particular cases: periodic
boundary conditions, and free boundary conditions on semi-infinite regions which are
symmetric about the main lattice diagonal.

For periodic boundary conditions, we prove that the cluster expansion for the free energy
converges up to the critical point w = 1/4. To our knowledge, this is the only example for
which one can establish convergence of a cluster expansion throughout the corresponding
phase, This convergence allows us to extend our results for w < 1/d to complex weights
e and fugacities y.

From a physical viewpoint, a natural choice of boundary conditions is that of free
conditions on regions with sides parallel to the main lattice diagonal. In the presence of a
uniform external field (w, = w for all ), the oriented flux lines tend to follow the lattice
diagonals and are thercfore parallel to the faces of these regions. We use these regions
to construct a semi-infinite system and study the penetration of flux lines in the Meissner
phase.

The organization of this paper is as follows. The model is precisely defined in the next
section. In the following section, we state and prove our main results for free-boundary-
condition systems oriented along the lattice axes. Systems with periodic boundary conditions
and free-boundary-condition systems oriented along the main lattice diagonal are discussed
in the final section. In the appendix, we establish existence of the free energy for the
v == —1 model.

2. The model

We define our flux line model on the d-dimensional lattice Z¢. The lattice is equipped with
a natural partial order: we will write x < y,or y > x, if x¥* L y* forall u =1,...,d and
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x¥ < y¥ for some v. Let A be a subset of lattice vertices, and let |A| denote the number of
vertices in A. We define two types of boundary points, as follows. A site x € A belongs
to 8. A if x has a nearest neighbour y such that y ¢ A and y < x. A site x € A belongs to
9_A if x has a nearest neighbour y such that y ¢ A and y > x. Then 0A = ., AU8_A
but 34 A and 8_A need not be disjoint.

The basic objects in our model are oriented Aux lines. A flux line in A is an increasing
sequence {xg, X1, ..., Xp) Of nearest neighbour vertices x; € A; with x; < x4 for all 7,
-and xp € 8.4 while x, € 8_A. Thus the points in 8; A serve as possible sources of flug,
while those in 3_A serve as sinks. We always have a strict non-intersecting condition for
configurations of flux lines, meaning that different lines cannot share any vertex.

A flux line can also be viewed as a path along bonds in A. We associate an activity
w(b) = w, with each bond & in the u lattice direction. The parameter e, can be thought
of as exp{—B(e — H,)} where 8 = 1/kT is the inverse temperature, € is an energy per unit
length, and A, is the magnetic field in the yx direction. In addition, we introduce a fugacity
y for each fiux line. This leads to the following grand canonical partition function:

ZA)=Z(@,y; A) = Zy"“)]‘[]‘[w(b) €))
tel bet
Here we sum over all sets £ = {£;, ..., £y} of non-intersecting flux lines ¢; in A. For

each line £, we write b € £ if both endpoints of b lie in £. Notice that there is an upper
bound on the number (L) of flux lines in any set £, namely min{|3,. A, ]0-Al}.

The k-point correlation function of the model is defined by restricting the sum in (1) to
configurations in which the flux lines contain k given distinct points xi, .. . x:

S xe A =2 Y Ol e®. @)
L 2zl bal i
Xl onXp €P(L)
Here P(L), £ = {¢y, ..., %)}, denotes the union of all points in £;,.... &,.

We define the free energy of the model

f = f@,5) =~ lim ﬁlog Z(w, 3 &) @)

and the infinite-volume k-point correlation function

Se(x1, ., x) = li&}d Se(xy, ... xp A) . 4)

where the limits are taken along any sequence of rectangular sets

A={xeZ| —N,<x, <Ny, u=1,....d} 5)

18A]

v 0. The existence of the limit (3) is proved

satisfying the usual van Hove condition
in theorem 1.
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3. The main theorem
Our main result is the following theorem. In order to state it, we introduce the (rescaled)

£ norm of w:

1 d
OB ©

p=1

llool| =

Theorem I. lety >0and w, 20, p =1,---,d. Then

(i) The thermodynamic limit (3) exists along any sequence of rectangular sets A satisfying
the van Hove condition J'I{T — 0. Furthermore, it is independent of y: f(w,y) =
flw, D).

(ii) For [lw|| < 1/d, f(w, y) and all bulk correlation functions Sy(x;, - - -, xz) are zero.
(iiiYFor Jlwl| > 1/d, f(w,y) < 0.

Corollary. For all y > 0, the model has a phase transition at ||| = 1/d.

Proof of theorem [. (i) We first use a subadditivity argument to prove the existence of the
limit (3) for y = 1. Let A be a finite subset of Z%, and partition A according to

A=A UA, and ANA;=8. (7)
We claim that for y =1 and wy, 2 0

Z(8) < Z(A1) Z(A2) (1 + max w0, ) B A (®)

where B(A,, A;) is the set of all nearest-neighbour bonds with one endpoint in A and the
other in A..

In order to prove (8), we introduce, for an arbitrary set A C Z¢, the set B(A) of
nearest-neighbour bonds with both endpoints in A. Given a configuration £ contributing
to Z(A), we decompose it into £ U £y U A, where the £;, i = 1,2, are configurations of
lines containing all bonds of £ which are in B(A;), while A is the set of all bonds of £ in
B{A, Ag). Observing that £, and £, are configurations coniributing to Z(A.)) and Z{A9),
we obtain the bound

zmy= 3 ’(1‘[ ﬂw(b))(l‘[ Hw(b)) (]’1 w(b))

L1.L3.8 Mel) bet £ely bel beh

<Z(ADNZA) Y, Jlew

ACB(A.A2) BEA
< Z(ADZ(A2)(1 + max @) BATAD )

Here the sum Y. goes over all £y, £; and A such that £, U £> U A is a configuration
contributing to Z(A). This proves the desired inequality (8).
Applying the inequality (8) to rectangular regions, the existence of the limit (3} for
= 1 foliows by a standard subadditivity argument.
For y # 1, we procesd as follows. Using the fact that the number of lines conmbutmg
to Z(A) is 2 non-negative integer

n(L) € min{[d-Al, [, A} < [8A] (10)
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we obtain the bound
Z{w, 1; A) min{1, yPM} € Z(w, y; A) € Z(w, 1; A) max{1, y?2}. an

Taking the logarithm, dividing by |A|, and taking the limit |A| — oo, we obtain the
existence of the limit (3), and the equality of f(w, y)} and f(w, 1) forall y > 0.

(ii} In order to prove that the free energy vanishes for [[w|| < 1/d, we first rewrite the
partition function as a sum over ordered sequences of non-intersecting flux lines £,..., &,
in A, and then drop the non-intersecting constraint to obtain

2w=32 ¥ [1[]o®

n=0 Lueerily i=1 bEL;
> ZT1(Tew)
—0 i=1 £ bet
=ef (12)
where
FA)=Fo,yn=y Y [Je@® (13)

L. A—d_ A bed

is the one flux line contribution to the partition function.

We claim that F(A) is Q(|dA[). Indeed, decomposing the terms in F according to their
starting points, and noting that the sum of [],., @(b) over all oriented lines of length s
starting at a given point x Is exactly (d|{w||)*, we have

F=y 2. 2 [le®

xed A Lx—dl A bel
dist(x.0_A)
Heolly

NP VA = o

x€0 A

Here |lwll; = Zu || = d ||lw]], and dist(x, 3_A) is the length of the shortest oriented
path from x to 9_A. Noting that [[e||; < 1 by assumption, this yields

)l
€ —2—|3,A 15
T 13)

and hence the claim. Although it is not necessary for the purposes of this proof, we note that

the sum in (14) is dominated by the terms on the boundary between 8_A and 3.4, leading

to a sharper estimate on F. For example, for a cube of side L, this gives F < O(L4™2).
Thus we have

< Z(A) g 008D - (16)

from which it follows that the infinite-volume free energy is zero.
In order to prove that the k-point correlauon functions go to zero as A 1 Z¢, we bound

them by the k-point correlation functions Sk (%1, ..., xx2 A) of the non-interacting model,
which in turn can be expressed in terms of the k-point connectivity functions
G, s M) = Y y[e®. (17)

LxelVi  bed
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Here the sum runs over all single flux lines in A which include all & points xy, ..., xx. The
free correlation functions are simnply

SOGL .z aY= 3 [ (ke 4) (18)

w of {l..k} fex

where the sum runs over ail partitions = of {1, ..., k} into disjoint subsets, and where we
denote these subsets by [ € .
In order to show that the correlation functions Si(xy, ..., xe; A) are bounded by the

non-interacting functions, we decompose each term £ appearing on the right-hand side
of (2} into a set Lx of lines £ € £ which each intersect at ieast one point x; in the set

= {x), ---, X} and a remaining set L‘, L\ Ly. The non-intersecting constraint on £
ilnplies that both Ly and £ consist of non- -intersecting lines, and furthermore that the lines
in £ do not intersect any of those in Ly. Denoting this latter restriction by L~ Ly, we
have

Se(x, ... xk,A)—ch)'l(}:y"“*’ Hﬂw(b))( > y"ff’l"[ﬂw(b)).

fely bet L:lmly gel bel

(19)

Relaxing first the non-intersection restriction between £ and Ly, and then the non-
intersection restriction within Ly, we have

Sk(xiy ..o x5 A) € Z(A) ! (Zy"“:x) [T ﬂw(b))(zv"“’l_[["[m(b))

EeLly bel tel ket
- Zyﬂ(ﬂx) H H“’(b)
¢ely bel
< S,E‘”(xl, X A) (20)

Observing finally that
“ “dns:(i).;.A AoAKD

{0

T, (X, e X A 21

k ( 1 k = 1— ||fb’”1 ( )
where dist(d. A, 9_A; X) is the length of the shortest orlented line £ : 3.A —~ G_A
which passes through all points in X, we obtain that z'k (x;, ....xp: A) and hence also
Sw)(xl,...,xk, Ay and Sp(xy, ..., Ay goto zeto as A 4 Z".

(iii) In order to establish that f(w,y) < O for ||w]] > 1/d, we bound the free energy
of the y = +1 model by that of the y = —1 model and then use the exact solution of the
latter, as established rigorously in the appendix. To this end, we define Zpe.(ew, y; N) as the
partition function on the torus Ty = (Z/NZ), obtaining now a sum over configurations
L of coriented loops. Observing that Zpee(w, 1; N) € Z(w, 1; Ay), where Ay is the cube
[0,1,.--, N}¥, we obtain

Next we use an exact expression for the real part of the free energy of the y ==l
model;
y 1 2 2 d .
1 - i — —— e — =16, .. .
N]'.l{Ich log | Zper{w, —1; N} ) fo fo log|1 fi:lwue dé,

(23)
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This expression was first derived in [8]. In the appendix (thecrem A), we prove that the
Iimit on the left-hand side exists and is equal to the integral on the right-hand side for a
dense sett of w in RY. Moreover, using equation (A4), it is easy to show that the right-hand
side of (23) is strictly positive if {|w|| > 1/d. Thus we obtain f(w, 1) < 0 for a dense set
of w obeying the condition ||@]| > 1/d. Combined with the fact that f(w, 1) is concave
and hence continuous we obtain statement (iii). O

4. Other boundary conditions

Periodic boundary conditions. The partition functions and correlation functions for periodic
boundary conditions are defined on the d-dimensional torus Ty = (Z/NZ). Instead of non-
intersecting oriented lines with sinks and sources in 8. A and 3_A, we now sum over non-
intersecting oriented loops winding around the torus without any sinks or sources. We denote
the corresponding partition function and correlation functions by Zper(N) = Zpar(w, y; N)
and S}:er(xl, -..»X%x; N}, and define the finite volume approximation fper(w, y; N) to the
free energy as :

frer(w, ¥s NY = =N log Zper(w, y; N} . 24)

One of the main purposes of this subsection is to point out some interesting properties
of the low-density cluster expansion for the model with periodic boundary conditions. The
cluster expansion expresses log Zpe(N) as an infinite series, summing over sequences of #
loops on Ty, n = 1..., 00, without non-intersection constraints:

log Zper(w, y; N) =,Z y—r: Z w(b) - ¢c(£;1 < 8n). (25)
 n!

£y \i=l bed; .
Here ¢.(£1,...,%,) is a combinatoric factor. (See [21,22] for a general review of the
cluster expansion.) An important property of ¢.(£y, ..., £,) is the fact that

Pl s £a) = (1) gy, .0, £0)]. (26)

As a consequence, the terms in the cluster expansion (25} for the y < 0 model all have the
same sign. This in turn implies that the expansion converges up to the first singularity of
log Zpe:(w, —|y]; N}. In the proof of theorem 2 below, we will use this fact to prove the
convergence of the cluster expansion up to the critical point ||w|| = 1/d.

Theorem 2. Lety € C and o € T4, Then

(i) For |lw|] < 1/d, both fre(w,y; ¥N) and the finite volume correlation functions
S (x1, -+ X N) g0 to zero exponentially in N as N — oc.

(ii) For (d||w|)" max{1, |y} < 1, the cluster expansion (25) is absolutely convergent.

t The exclusion of certain values of o is necessary since there is an infinite set of values on which the partition
function vanishes for infinitely many N.
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Proof. (i) As in section 2, we use a non-interacting model to bound fpec(w. ¥; N) and
82 (xy, -+ -, xx; N). Proceeding as in (12), we first bound

"

| Zpeclo, 3 N =1 €Y %l‘— H(Z I1 1@__(b>1) —oF ) g )
n=l * 2

i=l el

where

FNy =191 [Jle®)l (28)
£

bel

is & sum containing exactly one loop £ in Ty. Observing that the length of £ must be an
integer multiple of N, we obtain the bound

el

F(N) < AN Yy
W) < N

(29)

which implies that log Z,(N) and hence also frer(w, y; N) goes to zero exponentially in
Nas N — .

In order to prove that the correlation functions SP° (xi, ---, Xx; N) go to zero, we note
that each configuration contributing to Sf”(x], - -+, Xx, N) must contain at least one loop.
As a consequence,

| Zoer(N) SE (1, -+ xis V)| < D ‘—fq'—,- ]"[(Z [T lw(b)l) =efM 1. (30)
f [4

h=1 T o=l bel

Combined with the bounds (27) and (29), this implies that the correlation functions
Sﬁer(x;, v+, xx; N) go to zero exponentially in VN as N — oo,

(ii) We start with the observation that all terms in the cluster expansion for the y = —1
model have the same sign if w, 2 0 for all ;£. As a consequence, this expansion converges
up to the first singularity of log Zpe: (@, —1; N), i.e. up to the first zero of Zpe{w, —1; N).
By the exact solution, see equation (A1) in the appendix, Zoeelw, =1; N') 5 O for all o with
llwily < 1, and Zpe(w, —1; N) =0if Zy w, = 1. Thus, for w, 2 0, the cluster expansicn
for log Zpe(w, —1; N} is absolutely convergent if and only if ||e]; < 1. .

In order to prove staternent (ii) for general y € C and w € €¢, we must show that

G(w,y;m=2'—i',—" > (Hl—[lw(b)l) Betlts ... . t)l <00 (31)
=1 -

Bty \i=l bek
provided
llw| | max{1, [y} < 1. (32)
To this end, we will bound the terms in (31) by those of a suitable y == —1 model, thus using
again information on the exactly solvable y = —1 model to infer the desired properties of

the general y mode], Defining

@y = |, | max{1, |y|""} (33)
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and observing that, because £; has at least length &,

I Tle@) < ]aw (34)

bet, bet,

we have

[s=] 1 n
Gl yiM< Y~ (H Hé(b)) el ..., )l (35)
g £ i

— 10g Zper(@, = 1; N) = Z( L Z'( 5,(;,)) Bellr, s )

f=1 beg;

1 1
,T Z ( (b)) [Bellrs ..., £n)] (36)
&by \i= BEl

whenever the right-hand side is convergent. But as argued above, the expression {36) is
convergent if Zu @, < 1, implying the finiteness of G(w, y: N) and hence the absolute
convergence of the cluster expansion (25) for all w and y with }, &, < 1. Recalling the
definition (33) of &, this gives statement (ii). o o

Semi-infinite regionsind = 2

A well known effect in superconductors is the penetration of flux lines into the sample in
the Meissner phase. The density of flux lines decays exponentially with the distance from
the sample boundary; the length scale of this decay is known as the London penetration
length. Here we study the penetration of fiux lines in terms of the flux line density S;(x; A) -
in semi-infinite systems. Due to the identity (18) and the bounds (20) and (21), we have

Il [ldtstC3+A JA-Ax) ]}wi];;iist(i}+A.x)+dist(r.c?_A)
Si(x; A) < 1

=Tl =Tl @7

where dist(8,. A, x) is the length of the shortest oriented path from 3, A to x, and similarly
for dist(x, d-A).

The most obvious semi-infinite regions to consider are those oriented along the lattice
axes, &.g. the limit of hypercubes of the form

Hy={xeZ'10<x <2N, ~N<x, <N,pn=2,...,d}. (38)

However, in such regions, the flux lines cannot enter the sample without crossing it. Indeed,
if x ={x),...,x4) € Hy, then

dist(d  Hy,x) =x1 < o0 (39)
but
dist(x, d_Hy) — 00 as N — o0. (40)

It follows from (37) that §)(x; Hy) tends to zero exponentially in N. Similarly, all k-point
functions vanish:

Sk(xl,...,xk; Hoo) =0. (41)
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Thus we see that we must choose semi-infinite regions in which the flux lines are able
to exit the sample within a finite distance of the point at which they enter. In the presence
of a uniform magnetic field (w, = e forall u =1, ..., d), the oriented flux lines tend to
concentrate along the main lattice diagonal. It is therefore natural to consider regions with
boundaries oriented along this diagonal. To this end, let ¢, denote the unit lattice vector
in the g direction, let go denote the vector (1,..., 1) along the main lattice diagonal, and
let gy =dey —go, £ = 1,...,d. Note that g is orthogonal to each g, and that the set
{20, 81, .-, g4} is an overcomplete basis for R?. Denoting by gu(x) the scalar product of
x and g

d
go) =Y x,  gu)=dxy—golx) p=1,....4d (42)
u=1

let us consider the regions

Dyn = {x € Z*] [go(x)l S Mlgof* . IguI S Ngul?, p=1,....4d} (43)
where [go|? = d and [ng2 = d(d—1}) are the £; norms of g¢ and g,,, respectively. Note that,
ind =2 with M =N, Dyy is a diamond. In 4 =3, Dyy is a hexagonal prism with axis
along the main lattice diagonal. In general dimension d, Dy is a ‘prism’ along the main
lattice diagonal obtained by translating a regular (d — 1)-dimensional solid; the latter has
2d faces and is obtained by taking the intersection of a regular simplex with its inversion
through the origin. For example, the hexagon is obtained by intersecting a triangle with its
inversion, while the regular three-dimensional solid used to construct Dyy in d = 4 is the
octahedron obtained by the intersection of a tetrahedron with its inversion.
The half-spaces we will consider here are of the form

H® = {xeZ ]| g,(x) >0} . (44)

which can be obtained as limits of translates of the regions Dy . Without loss of generality,
we consider u = 1. Denoting by TV the translation by the vector N gy, we define our
approximation to the diagonally oriented half-space H? as

Hyn =T¥Dyw . (45)

The boundary of the prism Hyn consists of 24 + 2 faces: a top and a bottom with
normal vectors kg, and 24 sides with normal vectors £g,. We denote these sides by Lf.j:ﬁ).
Notice that the translation 7% was chosen to ensure that the origin sits in the middle of one
of the two faces orthogonal to g;, which is what we need for constructing our half-space.

The utility of the region Hyy is that each side boundary has a positive density of
sources and sinks. To illustrate this point, let us first consider the half spaces H#. A
point x &€ Z¢ lies in the boundary of H¥ if 0 € gu(x) < d — I.  Observing that
8u(x —e,) < 0 for all points x € FHW, while for v # u, gulx +e,) <0 if and only
if g,(x) = 0, one immediately finds that all point x € 8H with g,(x) = 0 lie both in
3_H® and 3, HY, while all other points in 8H® lie only in 8, H%. These remarks
also apply mutatis mutandis to the side boundaries of the finite prisms Hzw. This is to be
contrasted with the hypercubic regions Hy defined in (38), in which each face consists of
either sources or sinks, but not both (except along the edges). The separation of sources and
sinks is the reason that correlations vanish for the lattice oriented half-space H,, see (41).
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Here the flux lines penetrating the semi-infinite sample may exit after a finite distance,
Indeed, defining p(x, A) as the length of the shortest (unoriented) lattice path from the point
x to the set A, it is not hard to show that, for x € H and M, N large enough,

dist(d4 Hyr, x) = dist(8, HV, x) = p(x, 8HV) (46)
while
o(x, dHWY < dist(x, 8- Hyn) = dist(_H®D, x)
<W@—-2) + (d—-1Dplx, dHDY. 47
Thus by (37)
e 112"‘* SHD)
S(x; 8HMY = limsup S(x; Hyy) € —2— (48)
M.N—reo — @l

which gives an upper bound on the penetration length that scales like 1/|log||wili| as
el =dllwl[ — 1.

Appendix. The free energy of the ¥ = —1 model

The partition function of the y = —1 model [8] on a hypercubic lattice of side length N,
with periodic boundary conditions, can be rewritten as

N—1

’ N-1 d
Zoee(NY = Zpeelw, —1: Ny = [ -~ T | [1 — > e"gf:_lk“] . (A1)
ky =0 p=t

k=0

The corresponding formula for the absolute value of Zpee(w. —1; N) was derived in [8].
Strictly speaking, this only implies

d
zrato, 1) =@ T TT 1= S o] 4
k=0 p=1

However, Zpe(w, —1; N) is a polynomial in », implying that ¢x(w) is independent of @.
Noting that Zpe.(0, —1; N) = 1, we deduce gy = 0 and hence (A1)

Theorem A. Let w = Aa, a € B¢, and d > 2. Then for almost every A € R,

1 et d I d ) '
. —d e _1- _ ] — —i6
Jim N~log | Zpe:(w, 15 V)| (zﬂ)d.[J j; og |l ;w#e w|dg; ... dey
" (A3)
Remark. Using the identity
| n
"2?] log|4 + B e|dg = log max({|A], |B]} (A4)
o

which holds for all complex A and B, one easily sees that the nght-hand side of (A3) is
strictly bigger than zero if 3 |w,| > L.
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Proof. The result is trivially true if 4 = 0. We assume henceforth that @ # 0. Let us
define the dual lattice

2
TK}:[..A’_:.MOQ]C#QN—L;,a:l,...,d}. (AS)

We first identify those values of & for which the limit certainly does not exist. Define the
map H : R? - C by
a

H(x) = E a e %, (A6)

u=1

If H(x) — A~ has a zero in Ty; for some N, then (A1) is zero for all integer multiples of
this &, and the limit (A3) does not exist. Using this as a guide, we define, forall ¥ 2 1,

By= | J{eeR|ju—Re H{@) K N™*"Y) (A7)
eely
and also
k=] oo o0
B=JBx D={) | B». (A8)
N=1 M=y N=M
The Lebesgue measure of B is estimated by
0
m(BY< Y NIN"T? <0, (A9)
N=1

Hence the Borel-Canielli lemma implies that m(D) = 0. The set D contains the points we
wish to avoid. Qur result will follow once we show convergence in (A3) for any number
A with A~! ¢ D, since D has measure zero.

Let A € B, A 0, and.27" ¢ D. Then for some Np, A~} ¢ By for all N > Np. This
number A will be fixed for the remainder of the proof.

It will be convenient to consider the right-hand side of (A3) as an integral on a torus.
Let T¢ be the d-dimensional torus in C¢ defined by

T = (@, @) eC! | |l =1, p=1,....d}. (A10)
The singular subset of T¥ is defined as

d ;
S = {z T Y auzy =" ] . (All)
u=i

Every point z = {21,....24) € T¢ has an open neighbourhood with local coordinates
(x1,..., Xz}, where z,, = e7. We shall often use these local coordinates to describe S(A).
In particular, we define the level surface

Ly ={xeR| Hx) =17} (A12)
It foliows that S(A) is the image of L{A) under the map x, — e %,

We define the maps f, 2 : R - R by

d
fey=x"—ReH(xy=2" -3 a,cosx, (A13)
u=1
o
glr) =—ImH(x) =) aysinx,. (Al4)
=l

Then A~' — H(x) = f(x)+ig(x) and S(1) is locally described by the equations f(x) =0,
gx)=0. :
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Lemma A.1. The point (0, 0) is a regular value of the map (f, g) : RY — R2,

Proof. We must show that V f(x) and Vg(x) are non-zero, and not parallel, at any point
satisfying f(x) = g(x) = 0. Indeed,

8p f(x) = a, sinx, duglx) =a,cosx, . (Al15)

By equation (Al3), f(x) = 0 implies A™ = Y 8,g(x), so Vg(x) # 0. Suppose that
Vf(x)=0. Then if a, # 0, we must have x, = nx, and so f =0 implies A™! = 3" =+aq,
for some choice of signs. But this is impossible, because these values lie in D. Hence
V f(x) # 0. Finally, if Vf(x) = «Vg(x), then (A13)-(A15), and the fact that f =g =0,
imply 0 = A7}, so ¥ = 0. Hence V{ and Vg are not parallel. a

Lemma A.2. If S()) is non-empty, it is a compact (d — 2)-dimensional submanifold of 7.

Proof. Note first that S(k) is compact in C¢, since it is the intersection of the closed
bounded set 7¢ and the closed hyperplane Y a,z, = A~} Therefore it is also a compact
subset of T2,

Now S(L) is locally the level surface f ='g =0, and, by lemma A.1, (0, 0) is a regular
value of the map (f, g). Hence 3(0) is locally a (d — 2)-dimensional submanifold. O

Let us introduce the function £ : RY — R by
F(x) =log|l — AH(x)| = }ogA*(f(x)* + g, (Al6)

Since F(x) is periodic, it descends to a function on the torus T4, under the usual map
Zp = e~ "*, We denote this function by F(z). Then before taking the limit, the left-hand
side of (A3) can be rewritten as

N~%log | Zper(ra, —1; N)| = N7 Z F@. ' (A1
geTy

For all N > Np, we define a piecewise constant periodic function on R? by

2w 2n 2z
FMx):F(Fk) for Fku-gxﬂ<-§(k#+'l) kpeZ p=1,...,d.

(Al18)
We now claim that, for all N > Np and all x € R,
[Fy(x)| € Ko+ {d+2)logN (A19)

where Ko = max{[log(|A]}|, log(1+ |A| X_ |2, [)}). In order to see this, we first note that by
(A18), it suffices to prove (A19) for all x € T, But on T}, the left-hand side is equal to
[Hog[[A{{A~1 — H (x){]], which, by (A7), is bounded above by the right-hand side.

Since Fy is periodic, it also descends to a function Fiy on T¢, and we can rewrite (A17)
as

N~ log|Zpe(ra, —1; N)| = 27y~ [ Fn(z)dz (A20)
Td

where dz is Haar measure on 79. It is clear that Fy(z) » F(z) for z € S(A), which
means convergence a.e. We will prove theorem A by showing that (A20) converges to
(2r)~d f F(z)dz, which is equal to the right side of (A3). In order to do this we use

dominated convergence, so we first establish integrability of #.
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Lemma A.3. F(z) is integrable on T¢.

Proof. Let x = (x],...,xz) € L(A). Lemma A.l implies that for some p # v, the
Jacobian J = [a—z%%l is non-zero at x, and hence also in some neighbourhood U;.

Therefore we may use f, g as coordinates in U; in place of x,,x,. For simplicity of
notation, assume u = 1, ¥ = 2. Then

f[F(x)ldxl...dxd=-I—[ log[A2(f* + g7 dfdgdxs...dx, (A21)
Uy 1)y

where U} is the image of U, under the coordinate change. The log singularity is integrable,
and so the integral is bounded.

Consider now the collection of open sets {V,}es0) in 79, where V, is the image of Uy
under the coordinate map z, = e *. This is an open cover of S(A), so by compactness
(lemma A.2) there is a finite subcover {V), ..., Viy). Let x1,..., i be a compatible
partition of unity. Then

M
f F(z)dz = (Z / % F(z) dz) + f F(z)dz. (A22)
e = Ty,

The set T4 \U"f=1 V; is compact, and on it f is finite and continuous, so it is bounded
and the Jast integral on the right side of {A22)} exists. For each term in the first sum, we
have by (A21)

f % F(z)dz sf |F(z)|dz=f |Fx)|dx < o0. (A23)
Y i Y

Hence fra |F(z))dz < oo, so F is integrable. O
We define a distance function p on T2 as follows:
plz,w) =?Illég}i||x—y—zﬂn|l where z, = e w, =e U py=1,...,d. (A24)
The distance from z to S{A} is defined as
psiz) = wtisl}?}.) p(z, w). (A25)

Lemma A.4. Assume S(A) is non-empty. There exist § > 0, m > 0 and M < o¢ such that
for all z € T¢ with pg(z) < 8,

d
mps(z) < ’I — i) auz,| < Mps(@). (A26)
=1

Proof. For each z € T9, p(z, w) is a continuous function of w € S(), and so it achieves
its infimum at some point 5(z) € S(A)

ps(z) = p(z, 5(2)). (A27)
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Therefore, if we write z, = e, there is a vector s(x) € R? such that §(z), = e @,
and |]x — s(x)|| = ps(z). Furthermore, keeping x fixed, the function [|x — ||, when
restricted to L{A), has a critical point at y = s(x). Therefore the vector x — s(x} is normal
to L(X) at s(x). We will denote by Ay the normal space to L(A) at each point y € L(A).

Let y € L(») and # € N,. Then A7l — H(y +u) = H(y) — H(y + u). By expanding
to second order in i, we obtain

A= Hy +u)* = (e, Q0)u) + R(y; 1) (A28)

where the remainder satisfies a bound |R(y; #)| € C|l#|[?, with C independent of y, and
where the quadratic leading order part is

(., QM) = (VF (), w? + (Vg(y), u)*. (A29)

This matrix Q(y) satisfies uniform upper and lower bounds, as we now demonstrate. First,
vsing the explicit expressiofis for Vf and Vg, we get

(e, Q(¥)u) < llall® ||al)?. (A30}
. Second, lemma A.1 implies that (u, Q(y)u) > O forall 1 £ 0. Let

= inf , . i A3l
q(y) . .nnu||=1(“ Q(y)u) (A31)
By compactness of the unit circle in NV, g(¥) > 0 for all y € L(X). Also g(y) is a periodic
function of y, so it descends to a function 4(z) on S(A) C T9, which is also bounded away
from zero. Therefore there is some g > 0, so that for all y € L{A) and all u € N,

@, Q(u) = q llul. (A32)

Combining (A28), (A30) and (A32) we conclude that there exists § > 0 such that for all
yeL(),and all u € J\fJ satisfying ||u|| < 8, we have the uniform bounds

L) < 13— By +)] < 2lall el )

Now suppose that z € T¢ and ps(z) < 8. Then writing z,, = ¢ ™, and u = x — 5(x),
where s(x) is the vector defined after (A27), we have 4 € Ny and [|u]| = ps(z) < 8.
Therefore {A33) can be applied with y = s(x). Recognizing that H(y + u) = H(x) =
3. a,z,, we obtain the resuit (A26). a

Lemma A5, There is a positive number K such that for all N sufﬁc:enﬂy large, and all
z € TY,

Ev@i < @+ DIF@D+K. C (A3
Proof. Let€ =min{d, 1/2M}, where 8, M are the numbers in the statement of lemma A4,

Let Ny = max{Ny, 4r+/dM, 87+/dfe}. Fixany N > N,.
For r > ( define

W, = {z e T4 ps(z) < ;} (A35)
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The function |F(z)} is finite on the compact set T4\ W,, and hence there exists C; < 00
such that ]F (z)] < C) foraliz € T\ Wy. Forz € T¢ \ W, let 7' € T¢ be such that
Fn(z) = F(Z'). Then p(z.2") < 2w~/d /N by (A18), and z' € T¢\ Wa by the definition of
Ny. Thus [Fy(z)] < C; for all 7 € T¢\ W,, which establishes (A34) on the set 79\ Wa,

Let z € Wa, and suppose first that ps(z) < 47 NE d/N. Then Mps(z) € 1, so the upper
bound in (A26) implies that .

|F(z)| 2 log N — |logldn/dM];. (A36)

Combined with the bound (A19), this implies (A34).

Suppose now that z € W and ps(z) > 4RJE/N. As before, let 7 € T9 be
such that Ex(z) = F(z). Then p(z,7) < 2m/d /N, and simple geometry shows that
05(2) € 2ps(z"). Furthermore, the definition of N, implies that z € Wy, and the definition
of € implies that 2Mps(z} < 1. Therefore, using first the lower, then the upper bound in
{A26), we deduce

< |logm| + |log ps(z)l

< tlogm] + |log 2M| + | log Mps(z)|

< tlogmi + [log2M| + [F(2)]. (A37)
a

| Fn )l

We can now complete the proof of theorem A. Since Fy(z) — F(z) ae., lemma A3,
[emma A.5 and dominated convergence imply that

e [ Bvode~ ea [ Fod (A38)
T T4d
which is equivalent to (A3). O
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