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Meissner phase for a model of oriented flux lines 

C BorgstE, J T Chayestll and C King$T* 
t Institute for Advanced Study, Princeton. NI. USA 
t Department of Mathematics, Nonheastern University, Boston. MA 02115. USA 

Received 8 June 1995, in final form 5 September 1995 

Abstract. We consider a model of oriented, non-intersecting flux lines on the lattice Ed,  where 
each flux line is assigned a Boltzmann factor w per unit length and a fugacity y. We prove the 
existence of free energy, both for y > 0 and for y = -1, and show that it is independent of y 
for y > 0. Using upper and lower bounds in terms of exactly solvable models, we rigorously 
establish that. for all y 0. the model has a phase transition at w = ljd. For o c lid. we 
prove that the free energy and all bulk correlation functions vanish. implying the exclusion of 
flux lines from the bulk. In this regime, we also show that the flux line density decays at least 
exponentially with distance from the boundary. 

1. Introduction 

This paper concerns a '  d-dimensional model of oriented, non-intersecting flux lines, 
characterized by two parameters: a Boltzmann factor w per unit length and a fugacity y 
per flux line. Models of this type and related vertex and dimer models have been proposed 
by many authors [1-7]; the particular model considered here was frrst proposed by Wu 
and Huang [SI. Applications of these models include flux lines in superconductors [9-12], 
commensurateincommensurate transitions 113-151, biomembrane transitions [5,13,15,16], 
and polymer melting transitions [17]. 

2, 
and has a transition at w = I / d  [8]. The more physical y = 1 model has been solved 
exactly in d = 2 [2,3], where it has a second-order phase transition at w = f. In three 
dimensions, models similar to the y = 1 model have been analysed by various methods 
[5-7,161; applied to the y = 1 model, these methods suggest that it has a second-order 
phase transition at w = 4. 

In this paper, we rigorously establish that the model has a phase transition at w = I/d, 
for all y > 0 and all d > 1. In order to do this, we use the exact solution of the Wu-Huang 
y = -1 model as a bound. First we establish the existence of the free energy f ( w .  y )  for 
y > 0, and prove the somewhat surprising fa& that it is independent of the fugacity y .  We 
then bound f ( w .  y) = f ( w ,  1) by the known free energy of the y = - 1 model for w =- 1 /d,  
which, together with a simple bound coming from the non-interacting model, enables us to 

For y =. -1, the model has recently been solved exactly in all dimensions d 
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prove that o = l/d is indeed a critical point. In order to use the exact result, we must 
establish the existence of the infinitevolume free energy f(w, -1). This is accomplished 
by generalizing to arbitrary dimension a strategy recently developed by one of us [la] in 
the analysis of comelation functions in the two-dimensional y = -1 model. 

There are other examples of non-exactly solvable models for which it is possible to 
rigorously locate the critical point in the absence of duality. One such example is the 
d-dimensional Slater KDP model, for which Nagle [I91 located the critical point under the 
assumption of existence of the free energy. Also recently Madras [20] has proven that the 
self-avoiding walk on a square lattice has a phase transition, and has also located the critical 
point. 

In addition to proving the existence of a phase transition at o = l / d ,  we establish several 
properties of the ‘Meissner phase’, o < l/d. First, we show that the free energy and all 
bulk correlations vanish, implying the exclusion of flux lines and hence the interpretation as 
a Meissner phase. Also, for a semi-infinite system, we prove that the correlation functions 
decay at least exponentially with distance from the boundary. This provides an upper bound 
on the London penetration depth. 

The parameter w can be regarded as the exponential of an external magnetic field; it is 
therefore natural to consider a generalized model (see [S, 121) with non-negative direction- 
dependent weights os, p = 1, . . . , d. All of our results are stated and proved for this more 
general model, for which we show that the transition occurs at x,wp = 1; taking o,, = w 
for all p gives the critical value o = l/d stated above. 

We state and prove most of our results for the infinite-volume limit of rectangular 
systems with free boundary conditions. However, many of our results hold for other 
boundary conditions as well. In the final section, we consider two particular cases: periodic 
boundary conditions, and free boundary conditions on semi-infinite regions which are 
symmetric about the main lattice diagonal. 

For periodic boundary conditions, we prove that the cluster expansion for the free energy 
converges up to the critical point o = l/d. To our knowledge, this is the only example for 
which one can establish convergence of a cluster expansion throughout the corresponding 
phase. This convergence allows us to extend our results for o < l/d to complex weights 
o and fugacities y .  

From a physical viewpoint, a natural choice of boundary conditions is that of free 
conditions on regions with sides parallel to the main lattice diagonal. In the presence of a 
uniform external field (0, = w for all p), the oriented flux lines tend to follow the lattice 
diagonals and are therefore parallel to the faces of these regions. We use these regions 
to construct a semi-infinite system and study the penetration of flux lines in the Meissner 
phase. 

The organization of this paper is as follows. The model is precisely defined in the next 
section. In the following section, we state and prove our main results for free-boundary- 
condition systems oriented along the lattice axes. Systems with periodic boundary conditions 
and free-boundary-condition systems oriented along the main lattice diagonal are discussed 
in the final section. In the appendix, we establish existence of the free energy for the 
y = -1 model. 

2. The model 

We define our flux line model on the d-dimensional lattice Zd. The lattice is equipped with 
a natural partial order: we will write x c y ,  or y z x, if x s  < y p  for all p = 1 , .  . . , d and 
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x" < y" for some U. Let A be a subset of lattice vertices, and let [AI denote the number of 
vertices in A. We define two types of boundary points, as follows. A site x E A belongs 
to a+A if x has a nearest neighbour y such that y 4 A and y < x .  A site x E A belongs to 
8-A if x has a nearest neighbour y such that y 4 A and y > x .  Then aA = a+A U a-A, 
but a+A and a-A need not be disjoint. 

The basic objects in our model are oriented flux lines. A flux line in A is an increasing 
sequence (XO,  XI, . . . , x,)  of nearest neighbour vertices xi E A; with xi < xi+, for all i ,  

 and xo E a+A while x, E a-A. Thus the points in 8+A serve as possible sources of flux, 
while those in 8-A serve as sinks. We always have a strict non-intersecting condition for 
configurations of~flux lines, meaning that different lines cannot shae any vertex. 

A flux line can also be viewed as a path along bonds in A. We associate an activity 
o ( b )  = up with each bond b in the p lattice direction. The parameter mp can be thought 
of as exp(-.B(e - ITp)}  where ,8 = l j k T  is the inverse temperature. c is an energy per unit 
length, and H p  is the magnetic field in the p direction. In addition, we introduce a fugacity 
y for each flux line. This leads to the following grand canonical partition function: 

Here we sum over all sets L = { e , ,  . . . , &(cl} of non-intersecting flux lines ti in A. For 
each line e, we write b E e if both endpoints of b lie in e. Notice that there is an upper 
bound on the number n(L) of flux lines in any.set t, namely min{la+Ai, Ia-AI]. 

The k-point correlation function of the model is defined by restricting the sum in (1) to 
configurations in which the flux lines contain k given distinct points xl; . . .xx: 

Here P(L), L = {e, ,  . . .,en], denotes the union of all points in e l ,  . . . .e,.  
We define the free energy of the model 

1 
f =-f(m, y)  = - lim -log Z(w,  y; A) 

A t z "  

and the infinite-volume k-point correlation function 

&(XI,. . . . y) = lim &(XI,.  . . . x ~ ;  A) 
A@d 

(3) 

(4) 

where the limits are taken along any sequence of rectangular sets 

satisfying the usual van Hove condition e + 0. The existence of the limit (3) is proved 
in theorem 1. 
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3. The main theorem 

Our main result is the following theorem. In order to state it, we introduce the (rescaled) 
norm of U :  

Theorem I .  Let y > 0 and wp > 0, @ = 1,. . . , d. Then 

(i) The thermodynamic limit (3) exiss~~along any sequence of rectangular sets A satisfying 
the van Hove condition E + 0. Furthermore, it is independent of y: f(o, y) = 
f (0, 1). 

(ii) For 11011 < l / d ,  f ( w ,  y) and all bulk correlation functions & ( x l , .  . . , xk) are zero. 
(iii)For llwll > l /d ,  f(o, y )  c 0. 

Corollary. For all y > 0, the model has a phase transition at 1 1 0 1 1  = l / d ,  

Proof ofrheorem 1. (i) We first use a subadditivity argument to prove the existence of the 
limit (3) for y = 1. Let A be a finite subset of Zd, and partition A according to 

A =A1UA2 and A I  n A2 = 0. (7) 

We claim that for y = 1 and oP p 0 

Z(A) < z ( A ~ )  z ( A ~ )  (1 + maxoJp) 'E(K~.A~)~  (8) 
P 

where &AI, A,) is the set of all nearest-neighbour bonds with one endpoint in A, and the 
other in Az. 

In order to prove (S ) ,  we introduce, for an arbitrary set A c Zd, the set B(A) of 
nearest-neighbour bonds with both endpoints in A. Given a configuration L contributing 
to Z(A), we decompose it into tl U iC2 U A, where the ti, i = 1,2, are configurations of 
lines containing all bonds of L which are in B(A;),  while A is the set of all bonds of L in 
B(A1, A?). Observing that LI and LZ are configurations contributing to Z(A1) and Z(Az), 
we obtain the bound 

< Z(Al)Z(Az)(l + maxwP)lB("'."')I. (9) 
P 

Here the sum E' goes over all 4, LZ and A such that LI  U LZ U A is a configuration 
contributing to Z(A). This proves the desired inequality (8). 

Applying the inequality (8) to rectangular regions, the existence of the limit (3) for 
y = 1 follows by a standard subadditivity argument. 

For y # 1, we proceed as follows. Using the fact that the number of lines contributing 
to Z(A) is a non-negative integer 

n ( D  G min(la-Al, la+All 6 laAl (10) 
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we obtain the bound 

~ ( o ,  1; A) min{l, ylaAl] G z(o,y; A) G Z(O, 1; A) max{l, ylanl). (11) 

Taking the logarithm, dividing by ]A], and taking the limit 1A1 + CO, we obtain the 
existence of the limit (3), and the equality of f(w, y) and f (w. 1) for all y > 0. 

(ii) In order to prove that the free energy vanishes for [loll < I/d, we first rewrite the 
partition function as a sum over ordered sequences of non-intersecting flux lines e , ,  . . . , e, 
in A, and then drop the non-intersecting constraint to obtain 

where 

is the one flux line contribution to the partition function. 
We claim that F ( A )  is O(IaA1). Indeed, decomposing the terms in F according to their 

starting points, and noting that the sum of RbEe o(b)  over all oriented lines of length s 
starting at a given point x is exactly ( d l / ~ l l ) ~ ,  we have 

F = Y  no@) 
.&+A (:x-+il-h bEt 

Here 110111 = E, lopl = d lloll, and dist(x, 8-A) is the length of the shortest oriented 
path from x to a-A. Noting that 1 1 0 1 1 ~  c 1 by assumption, this yields 

and hence the claim. Although it is not necessary for the purposes of this proof, we note that 
the sum in (14) is dominated by the terms on the boundary between X A  and a+A, leading 
to a sharper estimate on F .  For example, for a cube of side L, this gives F Q O(Ld-2).  

Thus we have 

1 < Z(A) < eo('aA') (16) 

from which it follows that the infinite-volume free energy is zero. 
In order to prove that the k-point correlation functions go to zero as A t Zd, we bound 

them by the k-point correlation functions S~o)(x , ,  . . . , xk:  A) of the non-interacting model, 
which in turn can be expressed in terms of the k-point connectivity functions 
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Here the sum runs over all single flux lines in A which include all k points X I ,  . . . , xk. The 
free correlation functions are simply 

where the sum runs over all partitions n of [ 1, . . . , k }  into disjoint subsets, and where we 
denote these subsets by I E R. 

In order to show that the correlation functions Sk(x1, . . . , xk;  A) are bounded by the 
non-interacting functions, we decompose each term C. appearing on the right-hand side 
of (2) into a set LX of lines & E L which each intersect at least one point xi in the set 
X = [XI, . . . , xk] and a remaining set 1: =,E \ 1:~. The non-intersecting constraint on L 
.mplies that both LX and 2 consist of non-intersecting lines, and furthemore that the lines 
in 2 do not intersect any of those in Lx. Denoting this latter restriction by 2 - Lx, we 
have 

(19) 
Relaxing first the non-intersection restriction between 2 and Lx, and then the non- 
intersection restriction within Lx, we have 

Observing finally that 

where dist(a+A, L A ;  X )  is the length of the shortest oriented line e : a+A 8-A 
which passes through all points in X ,  we obtain that zio)(xl, ..., xi: A) and hence also 
Sk (XI, .  . . , XI;;  A) and & ( X I , .  . . , xk;  A) go to zero as A t Zd. 

(iii) In order to establish that f(o,r) < 0 for llwll > l / d ,  we bound the free energy 
of the y = +I model by that of the y = -1 model and then use the exact solution of the 
latter, as established rigorously in the appendix. To this end, we define ZP&. y ;  N )  as the 
partition function on the torus TN = ( Z / N Z J d ,  obtaining now a sum over configurations 
1: of oriented loops. Observing that Z,&, 1 ;  N )  < Z ( w ,  1 ;  AN), where A N  is the cube 
(0, 1, . . . , I V } ~ ,  we obtain 

(0) 

Z(W, 1; AN) > Zpdw, 1; N )  2 l Z p r ( ~ ,  -1; N)I. (22) 
Next we use an exact expression for the real part of the free energy of the y = -1 

model: 
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This expression was first derived in [SI. In the appendix (theorem A), we prove that the 
limit on the left-hand side exists and is equal to the integral on the right-hand side for a 
dense sett of w in Rd. Moreover, using equation (A4), it is easy to show that the right-hand 
side of (23) is strictly positive if j jwll P l j d .  Thus we obtain f (w,  1) < 0 for a dense set 
of w obeying the condition I lwll P I j d .  Combined with the fact that f (w, 1) is concave 
and hence continuous we obtain statement (iii). [? 

4. Other boundary conditions 

Periodic boundary conditions.  the partition functions and correlation functions for periodic 
boundary conditions are defined on the d-dimensional torus TN = ( Z / N Q d .  Instead of non- 
intersecting oriented lines with sinks and sources in a+A and &A, we now sum over non- 
intersecting oriented loops winding around the torus without any sinks or sources. We denote 
the corresponding partition function and correlation functions by Z,,(N) = ZP&, y; N )  
and Sy(xl..  . . , X X ;  N ) ,  and define the finite volume approximation fP&, y; N )  to the 
free energy as 

f p d w ,  Y ;  N )  = -Wd lOgZper(w, Y; N ) .  (24) 

One of the main purposes of this subsection is to point out some interesting properties 
of the low-density cluster expansion for the model with periodic boundary conditions. The 
cluster expansion expresses logZp,(N) as an infinite series, summing over sequences of n 
loops on TN, n = 1 . . . , CO, without non-intersection constraints: 

Here @,(el,. . . , e , )  is a combinatoric factor. (See [21,221 for a general review of  the 
cluster expansion.) An important property of @&I, .... e,,) is the fact that 

&(el, ...., en)  = ( - I ) ~ + ' I M ~ ~ .  . .. , e d .  (26) 

As a consequence, the terms in the cluster expansion (25) for the y < 0 model all have the 
same sign. This in turn implies that the expansion converges up to the first singularity of 
logZ,(w, -1yI; N ) .  In the proof of theorem 2 below, we will use this fact to prove the 
convergence of the cluster expansion up to the critical point llwll = l j d .  

Theorem 2. Let y E C and w E Cd. Then 
(i) For llwll < l / d ,  both f,&. y; N )  and the finite volume correlation functions 

p e r  
( X I ,  . . , y; N )  go to zero exponentially~ in N as N + W. 

(ii) For (dllwll)N max{l, l)il) < 1, the cluster expansion (25) is absolutely convergent. 

t The exclusion of certain values of w is necessary since there is an infinite set of values on which the partition 
function vanishes for infinitely many N. 
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ProoJ 
q ( x l , .  . . , xk; N ) .  Proceeding as in (12), we first bound 

(i) As in section 2, we use a non-interacting model to bound fper(o, y; N )  and 

where 

is a sum containing exactly one loop t in TN. Observing that the length o f t  must be an 
integer multiple of N ,  we obtain the bound 

which implies that log Z,,(N) and hence also fp,(o, y; N )  goes to zero exponentially in 
N as N -+ 00. 

In order to prove that the correlation functions S,pc'(x,, . . . , X K ;  N )  go to zero, we note 
that each configuration contributing to S:cI(x~, . . . , x ~ ;  N )  must contain at least one loop. 
As a consequence, 

Combined with the bounds (27) and (29), this implies that the correlation functions 
S r ( x l ,  . . . . x x ;  N )  go to zero exponentially in N as N --f CO. 

(ii) We start with the observation that all terms in the cluster expansion for the y = -1 
model have the same sign if w, > 0 for all I*.. As a consequence, this expansion converges 
up to the first singularity of logZ,,,(w, -1; N ) ,  i.e. up to the first zero of Z,,,(w, -1; N ) .  
By the exact solution, see equation (Al) in the appendix, Zp,(w, -1; N )  # 0 for all o with 
l lwll l  1, and Z,,(o, -1; N )  = 0 if C,o, = 1. Thus, for U, 0, the cluster expansion 
for IogZ,,(o, -1; N )  is absolutely convergent if and only if llolll c 1. 

In order to prove statement (ii) for general y E C and o E C*, we must show that 

provided 

To this end, we will bound the terms in (31) by those of a suitable y = -1  model, thus using 
again information on the exactly solvable y = -1 model to infer the desired properties of 
the general y model. Defining 



Meissnerphase for a model of orientedfluc lines 

and observing that, because ei has at least length N ,  

6491 

we have 

On the other hand, 

whenever the right-hand side is convergent. But as argued above, the expression (36) is 
convergent if C, GG i 1, implying the finiteness of G(w, y :  N )  and hence the absolute 
convergence of the cluster expansion (25) for all w and y with E, < 1. Recalling the 

0 definition (33) of 3, this gives statement (ii). 

Semi-infinite regions in d 3 2 
A well known effect in superconductors is the penetration of flux lines into the sample in 
the Meissner phase. The density of flux lines decays exponentially with the distance from 
the sample boundary: the length scale of this decay is known as the London penetration 
length. Here we study the penetration of flux lines in terms of the flux line density Sl(x;  A) 
in semi-infinite systems. Due to the identity (le) and the bounds (20) and (21), we have 

. ,  

disr(J+A.r)+din(r.8. A )  

(37) ~ ~~~ 

l l ~ l l l  SI(X; A) < - 
I I w l l ~ ( 3 + A , 3 - A : ~ )  

- 
1 - I I 4 I  1 - I lWl l l  

where dist(a+A, x )  is the length of the shortest oriented path from a+A to x ,  and similarly 
for dist(x, L A ) .  

The most obvious semi-infinite regions to consider are those oriented along the lattice 
axes, e.g. the limit of hypercubes of the form 

HN = ( X  € Z d j  O < X ~  < 2 N ,  - N  < x ,  < N ,  p = 2  ,..., d } .  (38)  

However, in such regions, the flux lines cannot enter the sample without crossing it. Indeed, 
if x = ( X I ,  . . . , xd)  E Hm, then 

dist(a+HN, x )  = X I  < 00 (39) 

but 

dist(x, a-HN) + 00 as N + 00. (40) 

It follows 'from (37) that $(I; H N )  tends to zero exponentially in N .  Similarly, all k-point 
functions vanish: 

& ( X I ,  . . . , X K ;  H,) = 0. (41) 
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Thus we see that we must choose semi-infinite. regions in which the flux lines are able 
to exit the sample within a finite distance of the point at which they enter. In the presence 
of a uniform magnetic field (U - w for all f i  = 1 ,  . . . , d), the oriented flux lines tend to 
concentrate along the main lattice diagonal. It is therefore natural to consider regions with 
boundaries oriented along this diagonal. To this end, let e, denote the unit lattice vector 
in the /* direction, let go denote the vector (1,. . . , 1) along the main lattice diagonal, and 
let g, = d e p  - go, i~ = 1,. . . , d. Note that go is orthogonal to each g,, and that the set 
(go, gl , .  . . , gd} is an overcomplete basis for Etd. Denoting by g,(x) the scalar product of 
x and g,: 

Y -  

let us consider the regions 

D M N = ( ~ E Z ’ I  Igo(x)l<Mlgol’, Igp(x)l<NlgplZ, f i = 1 ,  ..., 4 (43) 

where lgOl2 = d and lg,]* = d(d-1) are the & norms of go and g,, respectively. Note that, 
in d = 2 with M = N ,  DMN is a diamond. In d = 3, DMN is a hexagonal prism with axis 
along the main lattice diagonal. In general dimension d, DMN is a ‘prism’ along the main 
lattice diagonal obtained by translating a regular (d - I)-dimensional solid; the latter has 
2d faces and is obtained by taking the intersection of a regular simplex with its inversion 
through the origin. For example, the hexagon is obtained by intersecting a triangle with its 
inversion, while the regular three-dimensional solid used to construct DMN in d = 4 is the 
octahedron obtained by the intersection of a tetrahedron with its inversion. 

The half-spaces we will consider here are of the form 
. 

= ( x  E z d  I g p ( x )  2 01 (44) 

which can be obtained as limits of translates of the regions D M N .  Without loss ofgenerality, 
we consider f i  = 1. Denoting by T N  the translation by the vector N gl, we define our 
approximation to the diagonally oriented half-space H”’ as 

H M ~  = T N D M N .  (45) 

The boundary of the prism HMN consists of 2d + 2 faces: a top and a bottom with 
normal vectors &go, and 2d sides with normal vectors +g,. We denote these sides by LE;;’. 
Notice that the translation T N  was chosen to ensure that the origin sits in the middle of one 
of the two faces orthogonal to gl, which is what we need for constructing our half-space. 

The utility of the region HMN is that each side boundary has a positive density of 
sources and sinks. To illustrate this point, let us first consider the half spaces H@). A 
point x E Zd lies in the boundary of Hb) if 0 < gp(x)  < d - 1. Observing that 
g,(x - e p )  < 0 for all points x E aHb), while for w # f i ,  g,(x + e,)  < 0 if and only 
if g , ( x )  = 0, one immediately finds that all point x E aH(’) with gp(x) = 0 lie both in 
a-H(f l )  and a+H(”’, while all other points in aH(*) lie only in a+H@). These remarks 
also apply muratis mutundis to the side boundaries of the finite prisms H M N .  This is to be 
contrasted with the hypercubic regions HN defined in (38), in which each face consists of 
either sources or sinks, but not both (except along the edges). The separation of sources and 
sinks is the reason that correlations vanish for the lattice oriented half-space H,, see (41). 
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Here the flux lines penetrating the semi-infinite sample may exit after a finite distance. 
Indeed, defining p ( x ,  A) as the length of the shortest (unoriented) lattice path from the point 
x to the set A, it is not hard to show that, for x E H(’) and M ,  N large enough, 

Thus by (37) 

which gives an upper bound on the penetration length that scales l i e  1/1logllwIlll as 
ll4l1 =dlloll + 1.  

Appendix. The free energy of the y = -1 model 

The partition function of the y = -1 model [8] on a hypercubic lattice of side length N ,  
with periodic boundary conditions, can be rewritten as 

The corresponding formula for the absolute value of Z,,(w. - I ;  N )  was derived in [8]. 
Strictly speaking, this only implies 

However, Z,,(w, -1; N) is a polynomial in w ,  implying that (PN(W) is independent of 0. 
Noting that Z,,(O, - I ;  N) = 1, we deduce (P,V = 0 and hence (AI). 

Theorem A. Let w = ha, a E Rd, and d 2 2 Then for almost every A E p, 

Remark. Using the identity 

Lr 2n loglA + Be”Id0 = logmax(lA1, [E l )  (-44) 

which holds for all complex A and E. one easily sees that the right-hand side of (A3) is 
strictly bigger than zero if Cc Iw,l > 1. 
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Proof. The result is trivially true if U = 0. We assume henceforth that a # 0. Let us 
define the dual lattice 

Ti= - - k I O < k , < N - l ,  p = l , . . _ ,  d . 645) 

We first identify those values of A for which the limit certainly does not exist. Define the 
map H : R d  + C by 

1; 1 
d 

p=l 
H ( X )  = Cap e+ . 646) 

If H(x) - A-' has a zero in TG for some N ,  then (Ai) is zero for all integer multiples of 
this N ,  and the limit (A3) does not exist. Using this as a guide, we define, for all N 2 1, 

BN = U {a E B I [a - ReH(8)I < N-d-2)  (A7) 
err; 

and also 
m " 

B = U B N  ~ = n  U B N .  
N=l M=l  N=M 

The Lebesgue measure of B is estimated by 

m ( B )  < < 00. NdN-d-Z 
N= I 

Hence the Borel-Cantelli lemma implies that m ( D )  = 0. The set D contains the points we 
wish to avoid. Our result will follow once we show convergence in (A3) for any number 
A with A-' $ D ,  since D has measure zero. 

Let A E B, A # 0, and.A-' $ D. Then for some NO, A-' 4. E N  for all N >, NO. This 
number A will be fixed for the remainder of the proof. 

It will be convenient to consider the right-hand side of (A3) as an integral on a torus. 
Let T d  be the &dimensional torus in Cd defined by 

(A101 T d = { ( < i , : . . , & i ) ~ C d  I l ~ , l = 1 ,  p = 1 ,  ..., 4. 
The singular subset of T d  is defined as 

Every point z = ( z l ,  . . . , Zd) E Td has an open neighbourhood with local coordinates 
( X I ,  . . . , X d ) ,  where zll = e-'*. We shall often use these local coordinates to describe S(A). 
In particular, we define the level surface 

L(A) = (x E Rd I H(x) = A-']. ( A E  
It follows that S(h) is the image of L(A) under the map x, + e-"<*. 

We define the maps f ,  g : Bd B by 

Then A-' - H ( x )  = f (x)  +ig(x) and S(A) is locally described by the equations f(x)  = 0, 
g ( x )  = 0. 
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Lemma A.1. The point (0,O) is a regular value of the map (f, g )  : Rd + B2. 

Proof. We must show that V f ( x )  and V g ( x )  are non-zero, and not parallel, at any point 
satisfying f ( x )  = g ( x )  = 0. Indeed, 

a,g(x) = a, cos x, . (A13 

By equation (A13), f ( x )  = 0 implies A-’ = C a , g ( x ) ,  so V g ( x )  # 0. Suppose that 
V f ( x )  = 0. Then if a, # 0, we must have x, = nrr, and so f = 0 implies A-’ = =!=a, 
for some choice of signs. But this is impossible, because these values lie in D. Hence 
V f ( x )  # 0. Finally, if V f ( x )  = K V g ( x ) ,  then (A13)-(A15), and the fact that f = g = 0, 

U 

Lemma A.2. If S(A) is non-empty, it is a compact (d - 2)-dimensional submanifold of T d .  

Proof. Note first that S(A) is compact in ‘Ed, since it is the intersection of the closed 
bounded set T d  and the closed hyperplane Cu,z, = A-’. Therefore it is also a compact 
subset of T d .  

Now S(A) is locally the level surface f =‘g = 0, and, by lemma A.l ,  (0,O) is a regular 
value of the map (f, g ) .  Hence S(A) is locally a (d - 2)-dimensional submanifold. 0 
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a , f ( x )  = a,, sinx, 

imply 0 = KA-’, so K = 0. Hence O f  and Vg are not parallel. 

Let us introduce the function F : Rd + R by 

F ( x )  = log I 1  - AH(x)l  = f 10g[A2(f (x)’ + g(x ) ’ ) ] .  01 16) 
Since F ( x )  is periodic, it descends to a function on the torus T d ,  under the usual map 
zp = e-”.. We denote this function by F(z). Then before taking the limit, the left-hand 
side of (A3) can be rewritten as 

N-d log IZF,(Aa, -1; N)] = N-d F ( 8 ) .  (A17) 
S C T i  

For all N > No, we define a piecewise constant periodic function on Rd by 

2rr 2rr ’ 
for Nk, < x ,  c -(k,+.l) k, E Z @ = 1, ... , d .  

( A W  
N 

FN(X) = F ( g k )  

We now claim that; for all N > NO and all x E Rd, 

IFN(x)I < KO + (d + 2) IogN ( A W  

where KO = m a ( [  log(lAl)l, log(1 + IA/ [aJ)).  In order to see this, we first note that by 
(A18), it suffices to prove (A19) for all x E T;. But on T;, the left-hand side is equal to 
Ilog[(AllA-’ - H(x) l ] i ,  which, by (A7). is bounded above by the right-hand side. 

Since FN is periodic, it also descends to a function F,v on T d ,  and we can rewrite (A17) 
as 

N-dlOgIZp&a, -1; N)I ( 2 * ) - d 1 d  F,v(Z)dZ (AZO) 

where dz is Haar measure on T d .  It is .clear that F N ( z )  + f ( z )  for z $ S(A), which 
means convergence a.e. We will prove theorem A by showing that (A20) converges to 
( 2 ~ ) - ~ S F ( z ) d z ,  which is’equal to the right side of (A3). In order to do this we use 
dominated convergence, so we first establish integrability of F .  



6496 C Borgs et a1 

Lemma A.3. F(z) is integrable on Td. 

Proof. Let x = (XI, .  . . , Xd) E L(1). Lemma A.l implies that for some p # U, the 
Jacobian J = is non-zero at x, and hence also in some neighbourhood Uz. 
Therefore we may use f, g as coordinates in U, in place of I,, x,. For simplicity of 
notation, assume p = 1, v = 2. Then 

where U: is the image of Ux under the coordinate change. The log singularity is integrable, 
and so the integral is bounded. 

Consider now the collection of open sets (V,},,s,,) in Td,  where V, is the image of U, 
under the coordinate map z, = e-'*. This is an open cover of %A), so by compactness 
(lemma A.2) there is a finite subcover ( V I ,  ... , VM). Let XI, ... , XU be a compatible 
partition of unity. Then 

The set Td \ U,"=, Vj is compact, and on it is finite and continuous, so it is bounded 
and the last integral on the right side of (A22) exists. For each term in the first sum, we 
have by (A21) 

Hence & If(z)ldz < CO, so F is integrable. 0 

We define a distance function p on T d  as follows: 

p ( z ,  w )  = minllx - y  -2iinlI 

The distance from z to S(1) is defined as 

where z v -  - e-a* w,, =euiyS p = 1, .  . . , d .  (A24) 
"& 

LemmnA.4. 
for all z E Td with p&) < 6 ,  

Assume S(h )  is non-empty. There exist 6 > 0, m z 0 and M < cosuch that 

Proof. 
its infimum at some point z(z) E S(1) 

For each z E T d ,  p(z, w) is a continuous function of w E S(1), and so it achieves 

PdZ) = p ( z ,  f(z)) .  ( ~ 2 7 )  
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Therefore, if we write zi* = e-'*, there is a vector s ( x )  E Rd such that S(z), = 
and JJx  - s(x)ll = ps(z). Furthermore, keeping x fixed, the function IIx - ~ 1 1 ~ .  when 
resmcted to L ( k ) ,  has a critical point at y = s(x). Therefore the vector x - s ( x )  is normal 
to L(h) at s(x) .  We will denote by Ny the normal space to L(A) at each point y E L(h). 

Let y E L(h)  and U E JV.. Then A-' - H(y + U )  = H ( y )  - H ( y  +U). By expanding 
to second order in U, we obtain 

Ih-' - H ( Y  + u)I2 = (U. Q(s )u)  + R(s; U) (A28) 

where the remainder satisfies a bound IR(y; U)[ < ClluIl3, with C independent of y, and 
where the quadratic leading order pm is 

(U, Q(Y)u)  = (Vf(s),  U)' + (Vs(y), 1 O 2 .  (A291 

This matrix Q(y) satisfies uniform upper and lower bounds, as we now demonstrate. First, 
using the explicit expressiohs for V f and Vg, we get 

(U. Q ( Y ) u )  < lla1I2 I l ~ l l ~ .  ( ~ 3 0 )  

Second, lemma A.l implies that ( U ,  Q ( y ) u )  > 0 for all U # 0. Let 

By compactness of the unit circle in N,, q ( y )  > 0 for all y E L@). Also q ( y )  is a periodic 
function of y ,  so it descends to a function @(z) on S(h) c T d ,  which is also bounded away 
from zero. Therefore there is some q > 0, so that for all y E L(A) and all U EN, ,  

( ~ 3 2 )  2 (U. Q ( Y ) u )  2 q l l ~ l l  . 

Combining (A28). (A30) and (A32) we conclude that there exists S > 0 such that for all 
y E L(k) ,  and all U E H, satisfying l lull < 6 ,  we have the uniform bounds 

(-433) 

Now suppose that z E T d  and p s ( z )  < 6. .Then writing z,, = e-%P, and U = x - s (x) ,  
where s ( x )  is the vector defined after (A27), we have U E and llull = p s ( z )  < 6 .  
Therefore (A33) can be applied with y = s(x) .  Recognizing that H ( y  + U )  = H ( x )  = 

U 

4 7  -1IUlJ < 1h-I - H(Y +U)l < 21bIl IIUII. 2 

Ea,&, we obtain the result (A26). 

Lemma A.5. 
z E T d ,  

There is a positive number K such that for all N sufficiently large, and all 

IF"(Z)l <(d+2)1F(?) /+K.  (A34) 

Proof. Let E = min(6, 1/2M], where 6 .  M are the numbers in the statement of lemina A.4. 
Let N I  = max{No, 4n&M; Is&?/t}. Fixany N 2 NI. 

For r > 0 define 
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The function Ip(z) l  is finite on the compact set T d  \ W,, and hence there exists C1 < 00 
such that IE(z)l < CI for all z E T d  \ W,. For z E T d  \ W,, let z' E Td be such that 
~ N ( z )  = p(z'). Then ~(2.2') 6 2 x d / N  by (AlS), and z' E Td \ W, by the definition of 
NI. Thus ($,v(z)I 6 CI for all I E Td \ W,, which establishes (A34) on the set T d  \ W,. 

Let z E Wz, and suppose first that ps(z) < 4 n a / N .  Then Mps(z) < 1, so the upper 
bound in (A26) implies that 

lF(z) l  > log N - I log[47rJ;iMll. 

Combined with the bound (A19), this implies (A34). 
Suppose now that z E W, and ps(z) > 4xJ;iN. As before, let z' E T d  be 

such that F,v(z) = F(z'). Then p(2.z') < 2H&/N, and simple geometry shows that 
ps(z) 6 2ps(z'). Furthermore, the definition of N I  implies that z' E W,, and the definition 
of E implies that 2Mps(z') < 1. Therefore, using first the lower, then the upper bound in 
(A26), we deduce 

(A361 

('437) 
0 

We can now complete the proof of theorem A. Since k"(z) -+ p(z) as., lemma A.3, 
lemma A.5 and dominated convergence imply that 

which is equivalent to (A3). 0 
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